Sensors for Chem/Bio Defense - A Survey -

Presented by:

Dr. Aaron Budgor

Science Applications International Corporation McLean, Virginia

26 February 1999

Form SF298 Citation Data

Report Date ("DD MON YYYY") 26021999	Report Type N/A		Dates Covered (from to) ("DD MON YYYY")
Title and Subtitle Sensors for a Chem/Bio Defense-A Survey			Contract or Grant Number
			Program Element Number
Authors Budgor, Aaron			Project Number
			Task Number
			Work Unit Number
Performing Organization Name(s) and Address(es) Science Applications International Corp. McLean, VA			Performing Organization Number(s)
Sponsoring/Monitoring Agency Name(s) and Address(es)			Monitoring Agency Acronym
			Monitoring Agency Report Number(s)
Distribution/Availability Stat Approved for public release, di			
Supplementary Notes			
Abstract			
Subject Terms			
Document Classification unclassified			Classification of SF298 unclassified
Classification of Abstract unclassified			Limitation of Abstract unlimited
Number of Pages 25			

Agenda

- Overview
- Operational Needs
- Current System Requirements for Sensors
- Active Research

Acknowledgements

Material for Paper Provided by:

- LTC Michael Lanphere Joint Service Integration Group
- Eric Eisenstadt ONR
- Mark Siever NRL
- Cindy Swim SBCCOM

Overview

- Three classes of sensor information:
 - detection
 - localization
 - classification
- - Standoff/Early Warning forward looking infrared technology (FLIR); passive, Fourier transform infrared (FTIR) spectrometry;

Overview, Continued

- Current bio identifiers rely on detailed laboratory analysis
 - assays
 - electron and oil immersion microscopy
- Limited, but promising future solutions for biological sensors

Point - Manual - flow cytometry; ATP luminescence; UV aerodynamic particle sizer; mass spectrometry; Standoff/Early Warning - LIDAR

- Detection based on features of biological activity i.e. tryptophan for bacteria
- Biological characterization requires (to date) fusion of information
 - **☆ particle #**
 - * size distribution
 - * base pair constitution and sequence

Operational Needs

Enhanced detection, identification, mapping and confirmation of any standard/non-standard hazards including toxic industrial materials (TIMS).

Immediate notification of hazard existence/location.

Automated identification, plotting and hazard density mapping over time.

Obtain and preserve hazard samples.

- Point, aerial, shipboard (multiple platforms) and large area coverage.
- Water test capability.
- Integrated point and remote/early warning.
- Interface with joint C4I architecture.

Current Systems

Chemical Vapor Detector Requirements

- + Small Lightweight (pocket size)
- + Immediate detection time (seconds)
- + Low maintenance
- + Broaden from chemical agents to environmental
- Immediate cleardown time (seconds)
- No hazardous internal sources
- Inexpensive
- Ability to be networked
- Short term (days) memory; long term download for historical record
- Flexibility in applications
- Ability to learn (neural)

Chemical Water Monitor Requirements

- + No false alarms
- + Detect ppb/ppt levels of CB agents and their hydrolysis sentinel compounds in source, treated, distributed and discharge water
- + In-line continuous and batch (<=10 minutes) detection and quantification
- Low power, light weight, inexpensive
- Upgradeable, prefer no disposables, few moving parts, easy to maintain and use
- Modular system

Joint Chemical Agent Detector (JCAD)

OPERATIONAL CONCEPT

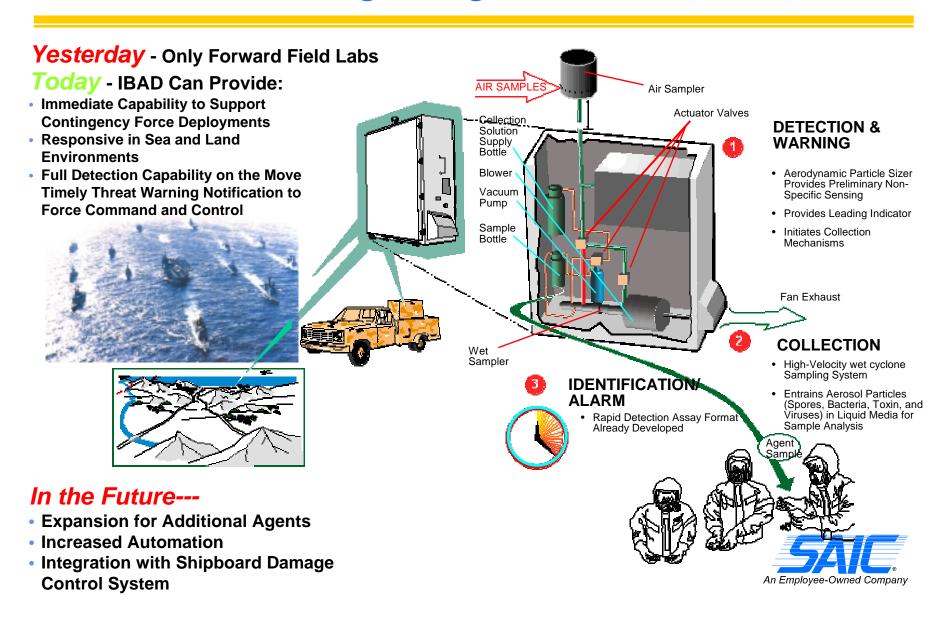
- Detect point and cumulative exposures of CW agents.
- Compatible with the Joint Warning and Reporting Network (JWARN).
- Operate from a variety of platforms to support contamination avoidance or reconnaissance.

CAPABILITIES REQUIRED

- Detect, ID and quantify nerve, blister and blood agent vapors.
- Liquid, particulate, specific agents and TIMs are objective requirements.
- Minimize false alarms (MTBFA > 168 hours).
- Capable of rejecting battlespace interferants.
- Will not exceed two (2) pounds and forty (40) cubic inches.
- **Nerve and Blister Agent Detection**
- Lightweight and Portable
- Expandable for Emerging Threat Agents
- Mass Spectrometry
- GC/SAW Combination
- Paper Size

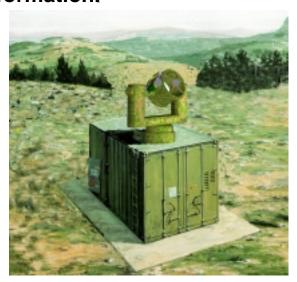
Biological Aerosol Detector Requirements

- + Sensitive to bacteria (20,000 cfu/ml), viruses (1x10⁷ pfu/ml), toxins (1 ng/ml)
- + Rapid detection
- + Minimal setup time (zero to 1 minute)
- Small, lightweight and ruggedized
- Low maintenance
- On-board filtration/eliminate interferents and dust
- High specificity without loss of sensitivity
- Fully automated; no skill required to operate
- Long operation time and ability to be networked
- Short term memory (days); long term download for historical record
- Flexibility of applications
- Adaptable to new threats



Biological Water Monitor Requirements

- + Sensitive to bacteria (20,000 cfu/ml), viruses (1x107 pfu/ml), toxins (1 ng/ml)
- + Adaptable to any water sampler
- + Rapid detection
- + Adaptable to new threats
- Small, lightweight and ruggedized
- On-board filtration/eliminate organic and inorganic interferents
- High specificity without loss of sensitivity
- Minimal setup time
- Fully automated; no skill required to operate
- Long operation time and ability to be networked
- Short term memory (days); long term download for historical record
- Flexibility of applications


Interim Biological Agent Detector (IBAD)

Joint Service Warning and Identification Lidar Detector (JSWILD)

OPERATIONAL CONCEPT

- Provide a laser standoff integrated chemical and bioaerosol detection capability for protection of fixed sites, ships, and possibly for recon.
- standoff CB detection of aerosols/rains/particulates/liquids in addition to vapors, in real time
- 20 km range and precise ranging information.

CAPABILITIES REQUIRED

- Max Range: 10 km now, 20 km in 2000
- Provides precise location of threat
- Vapor (nerve): 20 mg/m2
- Vapor (blister): 500 mg/m2
- Aerosols/rains: 20 mg/m2 or less
- Surface prediction: 0.01 g/m2
- Bioaerosol detection, discrimination?
- 99.6% probability of detection
- detects in a few seconds or less (real-time)

Technological Progression

DESERT STORM

Chemical

- > M8/M9 Paper
- > M256A1 Kit
- M8A1 CW Alarm
- M272A1 Water Kit
- > CAM
- > CAPDS
- > M21 RSCAAL
- > AN/KAS-1

Biological

→ SMART tickets

TODAY

Chemical

- > IPDS
- > ICAM
- > SALAD
- > ACADA
- > M93A1 NBCRS

Biological

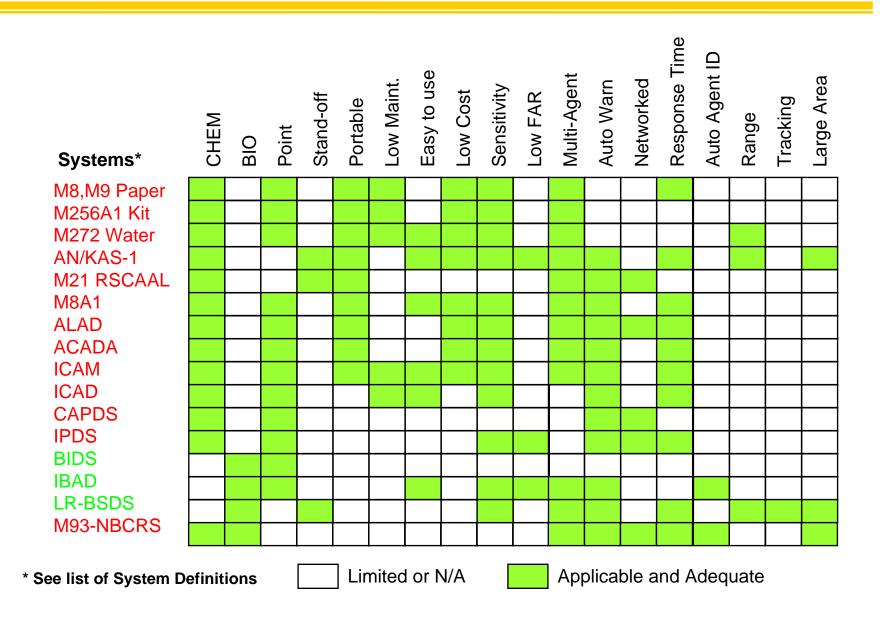
- > IBAD
- > BIDS
- > Portal Shield
- > LR-BSDS
- * including all Desert Storm Capabilities

FUTURE

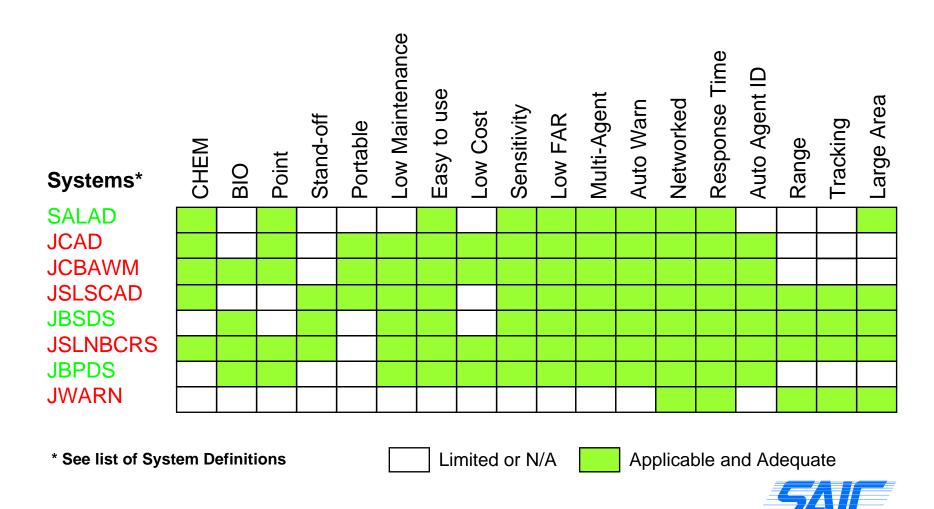
Chemical

- > JSLSCAD
- > JCAD
- > JCBAWM
- > JSWILD

Biological

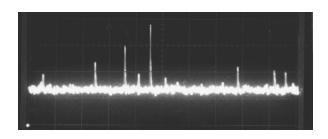

- > JBPDS
- > JBSDS

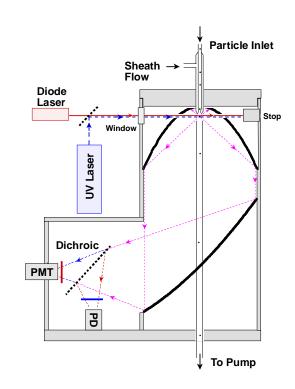
NBC Infrastructure


- > JSLNBCRS
- > JWARN

System Capabilities - Today

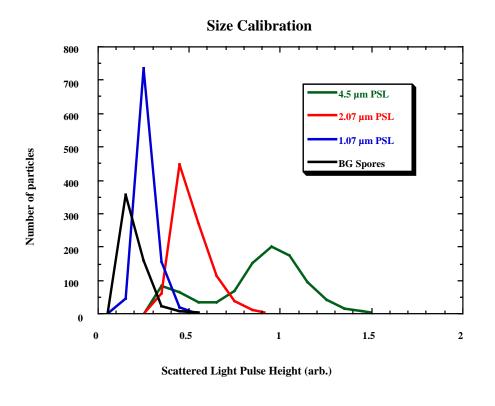
Future Systems Capabilities Objectives

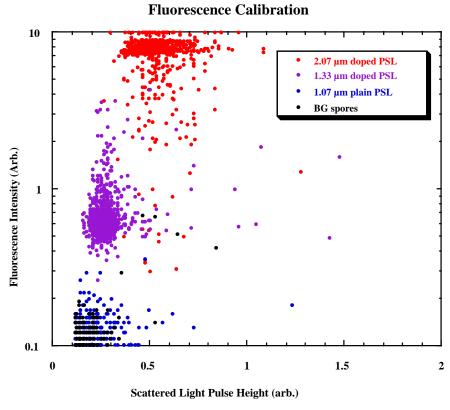


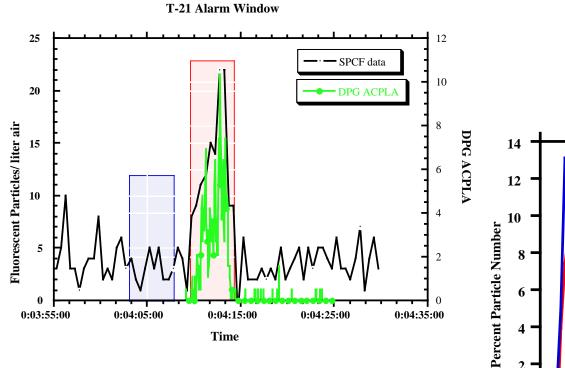

Future Directions and Issues

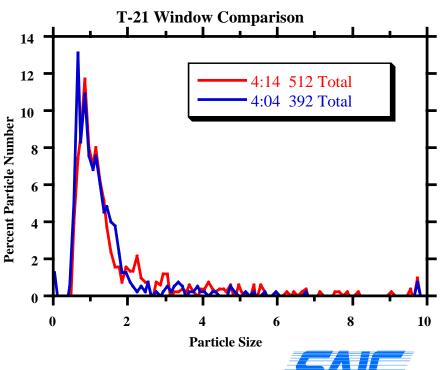
Single Particle Fluorescence - Detection Operation (Siever, NRL)

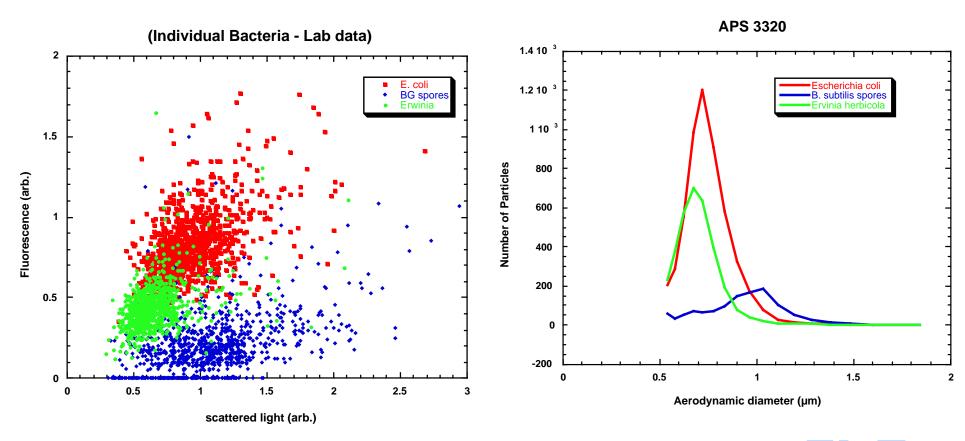
- Particles cross red beam & scatter light. Pulses are proportional to particle size and also trigger the UV laser
- 1 µsec later, UV laser excites the particle. Its fluorescent intensity indicates particle composition
- Scattered and fluorescent pulse heights are captured in data record.

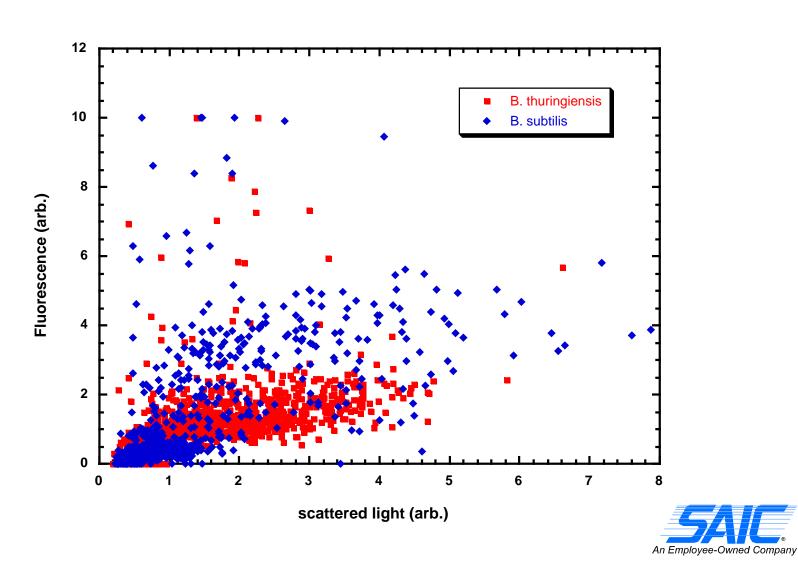




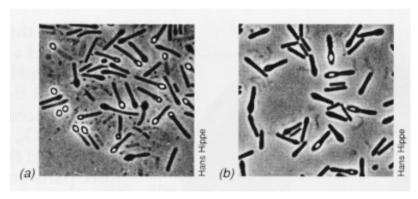

Calibration with PSL




Fluuorescence with Paticle Number Fusion


An Employee-Owned Company

Calibration with Bacteria



Bacterial Fluorescence Comparison

Distinguishing B. anthracis from It's Nearest Neighbors (Leighton, LBNL; Long, NMRI)

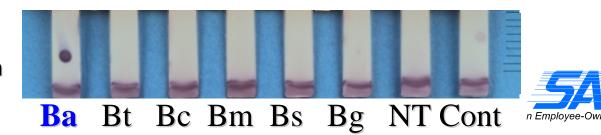
B. anthracis

B. cereus

Organism

Spore Protein Amino Acid Sequence

B. anthracis


TEFATETNVQAVKQANAQSEAKKAQASGASIQSTNA

:::.::: X:.::

B. cereus

TEFSTETDVQAVKQANAQSEAKKAQASGA--QSANA

Chromatographic Assay 50 ng; 30 min

Conclusions

- Lasers have been employed for detection (point ® limited range)
- Lasers have been used for gross features determination
- Gene-oriented characterization techniques are current research rage for rapid characterization
- Novel active (laser) ideas are ...

